Frequently Asked Questions about Agentic AI

· 4 min read
Frequently Asked Questions about Agentic AI

What is agentic AI, and how does it differ from traditional AI in cybersecurity? Agentic AI refers to autonomous, goal-oriented systems that can perceive their environment, make decisions, and take actions to achieve specific objectives. Unlike traditional AI, which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.

What are some real-world examples of agentic AI being used in cybersecurity today? Agentic AI is used in cybersecurity.

Autonomous threat detection and response platforms that continuously monitor networks and endpoints for malicious activity
AI-powered vulnerability scans that prioritize and identify security flaws within applications and infrastructure
Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats
Autonomous incident response tools that can contain and mitigate cyber attacks without human intervention
AI-driven solutions for fraud detection that detect and prevent fraudulent activity in real time
Agentic AI helps to address the cybersecurity skills gaps by automating repetitive and time-consuming security tasks currently handled manually. By taking on tasks such as continuous monitoring, threat detection, vulnerability scanning, and incident response, agentic AI systems can free up human experts to focus on more strategic and complex security challenges. Agentic AI's insights and recommendations can also help less experienced security personnel to make better decisions and respond more efficiently to potential threats. What are the implications of agentic AI on compliance and regulatory requirements for cybersecurity? Agentic AI helps organizations to meet compliance and regulation requirements more effectively. It does this by providing continuous monitoring and real-time threat detection capabilities, as well as automated remediation. Autonomous agents can ensure that security controls are consistently enforced, vulnerabilities are promptly addressed, and security incidents are properly documented and reported. However, the use of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis. How can  ai code remediation  integrate AI with their existing security processes and tools? For organizations to successfully integrate agentic artificial intelligence into existing security tools, they should:

Assess the current security infrastructure to identify areas that agentic AI could add value.
Develop a clear strategy and roadmap for agentic AI adoption, aligned with overall security goals and objectives
Ensure that agentic AI systems are compatible with existing security tools and can seamlessly exchange data and insights
Provide training and support for security personnel to effectively use and collaborate with agentic AI systems
Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity
Some emerging trends and future directions for agentic AI in cybersecurity include:

Increased collaboration and coordination between autonomous agents across different security domains and platforms
Development of more advanced and contextually aware AI models that can adapt to complex and dynamic security environments
Integrating agentic AI into other emerging technologies such as cloud computing, blockchain, and IoT Security
Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data
Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making
How can agentic AI help organizations defend against advanced persistent threats (APTs) and targeted attacks? Agentic AI can provide a powerful defense against APTs and targeted attacks by continuously monitoring networks and systems for subtle signs of malicious activity. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. Agentic AI, which adapts to new attack methods and learns from previous attacks, can help organizations detect APTs and respond more quickly, minimising the impact of a breach.

What are the benefits of using agentic AI for continuous security monitoring and real-time threat detection? The benefits of using agentic AI for continuous security monitoring and real-time threat detection include:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Rapid identification and prioritization of threats based on their severity and potential impact
Security teams can reduce false alarms and fatigue by reducing the number of false positives.
Improved visibility into complex and distributed IT environments
Ability to detect novel and evolving threats that might evade traditional security controls
Faster response times and minimized potential damage from security incidents
How can agentic AI enhance incident response and remediation? Agentic AI has the potential to enhance incident response processes and remediation by:

Automated detection and triaging of security incidents according to their severity and potential impact
Contextual insights and recommendations to effectively contain and mitigate incidents
Automating and orchestrating incident response workflows on multiple security tools
Generating detailed reports and documentation to support compliance and forensic purposes
Learning from incidents to continuously improve detection and response capabilities
Enabling faster, more consistent incident remediation and reducing the impact of security breaches
What are some of the considerations when training and upgrading security teams so that they can work effectively with AI agent systems? To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Provide comprehensive training on the capabilities, limitations, and proper use of agentic AI tools
Foster a culture of collaboration and continuous learning, encouraging security personnel to work alongside AI systems and provide feedback for improvement
Develop clear protocols and guidelines for human-AI interaction, including when to trust AI recommendations and when to escalate issues for human review
Invest in upskilling programs that help security professionals develop the necessary technical and analytical skills to interpret and act upon AI-generated insights
Encourage cross-functional collaboration between security, data science, and IT teams to ensure a holistic approach to agentic AI adoption and use


How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To strike the right balance between leveraging agentic AI and maintaining human oversight in cybersecurity, organizations should:

Assign roles and responsibilities to humans and AI decision makers, and ensure that all critical security decisions undergo human review and approval.
Implement transparent and explainable AI techniques that allow security personnel to understand and trust the reasoning behind AI recommendations
Test and validate AI-generated insights to ensure their accuracy, reliability and safety
Maintain human-in-the-loop approaches for high-stakes security scenarios, such as incident response and threat hunting
Encourage a culture that is responsible in the use of AI, highlighting the importance of human judgement and accountability when it comes to cybersecurity decisions.
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals